CIRCULAR 154

UNITED STATES DEPARTMENT OF THE INTERIOR
FISH AND WILDLIFE SERVICE
BUREAU OF COMMERCIAL FISHERIES
City of Galveston. The inset shows the general location at the mouth of Galveston Bay.

(Photographed by Lew Stewart.)

Front Cover-- The biological laboratory close behind the famous Galveston seawall on the Gulf of Mexico.

(Photographed by Lew Stewart.)
BUREAU OF COMMERCIAL FISHERIES BIOLOGICAL LABORATORY
GALVESTON, TEXAS

By George A. Rounsefell, Laboratory Director
Bureau of Commercial Fisheries

ESTABLISHMENT OF LABORATORY

The Bureau operated a small laboratory on Offatts Bayou in Galveston, Tex., in 1929 to study factors affecting the spawning and setting of oysters (Hopkins, 1931), which are harvested in several areas of Galveston Bay. This laboratory was discontinued in 1930; in 1931 the Bureau initiated an investigation of the South Atlantic and Gulf of Mexico shrimp fishery. At that time the fishery was only for the white shrimp, *Peneaus setiferus*, which was most abundant in Louisiana. Field work was carried on at several points from a headquarters office in New Orleans.

When a Gulf of Mexico fishery laboratory was established in 1950, Galveston (population 71,000) was the site chosen because it is one of the very few locations with a deepwater harbor opening directly to the Gulf that at the same time offers the variety of facilities desirable for successful operation--adequate housing, good schools, availability of all types of industrial services and equipment, library facilities, and an established commercial fishery. Galveston became an organized town in 1836 and a port of entry in 1837, the first in Texas. Although a major port, it is also a cultural center; each year a series of concerts includes performances by symphony orchestras from major U. S. cities, e.g., Detroit, Cincinnati, and Indianapolis.

CLIMATE AND RECREATION

The climate is mild; summer temperatures, seldom exceeding 90 degrees, are tempered by steady onshore breezes. Winter temperatures may drop during northerly storms into the 40's. During occasional years there may be light frost; the minimum temperature was 18°F, over a 60-year period. All of the offices and laboratories are air-conditioned to provide efficient working conditions.

Because of the agreeable climate, the area provides summer recreation for inland residents. The 25-mile beach is thronged with bathers, picknickers, and fishermen. Water skiing is a favorite sport. Fishing for channel bass, sea trout, Spanish mackerel, and flounders is excellent. Some fish from party boats, hundreds fish from a number of free fishing piers, many surf cast, and great numbers take advantage of numerous ramps to launch their outboard craft.

RESEARCH PROBLEMS

The research problems in the Gulf of Mexico are many and complex. Fishery research in the area is so recent that even the number and distribution of species are imperfectly known. Although it has been found that many species--menhaden, mullet, the three chief species of commercial shrimp, and most of the sciaenids--among others--spawn offshore, and the postlarvae or very young juveniles enter the protected bays and estuaries which they utilize as nursery areas; the role of the estuaries is not fully understood. They not only furnish nursery areas for these quasi-catacladromous species but also contain large populations of blue crabs, oysters, and resident fishes. It is difficult to overestimate the importance of these estuaries to the fisheries...
of the Gulf. Galveston is an especially desirable location for studying estuarine forms because it is in a transitional zone between the wet humid coast of Louisiana and the dry semiarid coast of southern Texas.

A Continental Shelf, over 100 miles wide in many places, harbors, in addition to the adults of the estuarine-reared species, a varied bottom fauna of calico scallops, wholly marine shrimps, and many shelf fishes including the snappers. The shelf is also the habitat of large schools of pelagic species, including thread herring, anchovies, and sardines. Extending from the shelf over deeper waters are tunas, marlins, and swordfish.

The Bureau of Commercial Fisheries Biological Laboratory assembles information useful for orderly and wise exploitation of these rich fishery resources, a few of which are approaching full utilization but many of which so far have been scarcely touched. This poses an enigma since it is necessary to emphasize research on the more heavily fished species without wholly neglecting to obtain information on the occurrence, abundance, and life histories of other species in order to insure the future welfare of the fisheries. Because of annual natural fluctuations in the abundance of any one species, coupled with seasonal patterns of availability, it is clearly in the best interests of the fishing industry to exploit many species instead of a few. This broader base tends to provide for year-round utilization of vessels and guards against the disaster of a temporary decline in the abundance of any one species.

LABORATORY SITE

The laboratory is in a modern residential district on the shore of the Gulf. The buildings, several of heavily reinforced concrete, were once part of Fort Crockett, a coast artillery base built about 1908. The Marine Laboratory of the Department of Oceanography and Meteorology of the A. and M. College of Texas, one block away, operates an oceanographic vessel in the Gulf. The A. and M. College of Texas also has established a Maritime Academy adjacent to their marine laboratory.

The offices and laboratories are housed in four heavy masonry buildings. Three wooden buildings are the shop, garage, and
storage. A new concrete sea-water laboratory on a 140-acre tract on Galveston’s East Lagoon is part of the experimental facilities.

FACILITIES

In Building A the second floor houses all administrative services, the library, the drafting and darkroom facilities, the Laboratory Director’s office, and a conference room.

The library, with a trained librarian, contains over 10,000 items, including most of the world fishery journals. The library is especially strong in miscellaneous State and institutional material of limited distribution seldom found in most libraries. For general biological publications not directly related to fisheries, the excellent library of the Medical Branch of the University of Texas is within 4 miles. The Marine Laboratory of the A. and M. College of Texas (within one block) has oceanographic reports. Large scientific libraries are within an hour’s drive at the University of Houston and Rice University. The laboratory library has a film and microcard reader.

The darkroom is equipped with copying cameras and photomicrographic apparatus.
Plan of building A. This heavy masonry building is 177 feet long and 28 feet wide.

Reading microcards in a corner of the library.
The conference room is equipped with a 16-mm. movie projector, opaque and transparent slide projectors, a tape recorder, and sets of nautical charts.

The physiology and behavior laboratories on the lower floor of Building A have four large (each about 8- by 10-foot) constant temperature rooms so that specimens can be maintained within a range from 30°F to 95°F. These are invaluable for determining the effects and interactions of environmental factors on growth, survival, and behavior. This knowledge is especially important to an understanding of estuarine species, since Gulf estuaries exhibit wide variations, seasonal and annual, in both salinity and temperature.

For microorganisms and larval forms, which can be studied in less space, the physiology laboratory is equipped with a number of constant temperature boxes. Other equipment includes a Warburg apparatus and respirometers for larger organisms.

The industrial fish laboratory contains a scale projector for use in studying age and growth. A reference collection of Gulf fishes is kept for rapid identification of the great number of species that occur in the biological samples.

The statistics office in the east end of Building A is used by the Statistics Branch of the Bureau as Texas headquarters for the collection of detailed statistics on the fisheries. These statistics of catches by species, area, depth, and vessel are of vital importance to the work of the biologists on fish and shrimp populations.
In the *catch-sampling laboratory*, data on the sizes and species composition of shrimp catches, taken by field biologists, are compiled to supplement the detailed statistics on the shrimp fishery.

The *chemistry laboratory* (Building C) provides certain specialized services to all of the other programs as well as performing assigned tasks. For instance, the laboratory has designed and built a distillation apparatus consisting of two pyrex stills with a mixed-resin deionizing column between them. The three units operating in series can produce over 100 gallons a day of pure water which is circulated to all laboratories through polyethylene pipe. The laboratory is responsible for the recirculating sea-water system (Building D) and the continuous flow sea-water system of the East Lagoon field station. The laboratory makes any necessary sea-water analyses and aids other programs in maintenance of environmental recording equipment.

The chemistry laboratory has a complete paper electrophoresis and also a moving-boundary electrophoresis apparatus for comparison and analysis of high-molecular-weight materials such as fish sera.
A variety of photometers includes filter electrophotometers that are used for 90 percent of routine analyses, a quartz spectrophotometer for those analyses that require a more precise wave-length control, and a recording spectrophotometer for analyses of a more specialized nature. A spectroscope and polarograph are used generally for the analysis of substances less complicated than sea water.

Caloric determinations are made with an oxygen bomb calorimeter, and some gas analyses are made with a conventional blood gas analyser.

An 8-cubic-foot autoclave with a steam pressure limit of 100 pounds is available for protein and total phosphorus analyses.

A recirculating sea-water system (Building D) was completed in 1961. The system holds over 60,000 gallons of sea water which is carefully monitored for pH, temperature, salinity, and nitrates so that fresh sea water can be added as required. The ceiling and walls are well insulated with glass wool and styrofoam, and air-conditioning maintains a steady temperature. To avoid metal contamination the sea water comes in contact only with concrete, glass, plastic piping, fiberglass, and redwood.

The laboratory serves two purposes. One is to hold quantities of various fishes and invertebrates needed from time to time in other laboratories for physiological and behavioral studies and bioassays of toxic materials. The second purpose is to provide aquarium space for observations and experiments of a varied nature in the sea-water laboratory itself. Thus, mature shrimp of several species have been held for spawning and the ensuing larval stages
General view of the main chemistry laboratory.

Temperature-controlled instrument room in the chemistry laboratory showing recording spectrophotometers and electrophoresis apparatus.
examined and described. Many refinements of shrimp-marking techniques are being tested in the tanks. Other studies are being scheduled as space permits.

The lower floor of Building B contains several laboratories. The *shrimp spawning and larvae laboratory* is used chiefly in studying the distribution and abundance of shrimp larvae and of the adult spawning populations. Here is where extensive field collections are studied. Ovary samples are sectioned, stained, and examined to determine stages of maturity. Samples of phytoplankton taken at the mouths of passes are examined and the postlarval shrimp enumerated to determine oceanic survival to the postlarval stage.

In the *plankton laboratory* offshore plankton collected with the Gulf V sampler are examined for larval shrimp and other forms under the plankton sorting hood which carries away the fumes of the preservatives. This laboratory is also used as a staging center to concentrate gear and equipment in preparation for each offshore cruise.

The *larval identification laboratory* is used for examining and describing the many larval stages of the several species of shrimp found in these waters.

Making bioassays of various chemicals in search of ones specifically toxic to the red-tide organism but harmless to valuable marine organisms.

In the *hydrographic laboratory* extensive series of hydrographic data from the offshore cruises are analyzed. This includes recovered drift bottles and seabed drifters released at widely scattered offshore stations in an endeavor to determine the currents at various depths.

General view of recirculating sea-water system (Building D) showing storage tanks, pump house, and sea-water truck.
Plan of building D. The three tank rooms contain 885 square feet. The two storage tanks hold 56,000 gallons of sea water which flows by gravity into the tank rooms, thence through the filter beds into an underlying 3,000-gallon sump from which it is pumped up into the storage tanks.

A portion of the collection of local fauna in the foyer of the recirculating sea-water laboratory.

The estuarine laboratory is used to measure, count and examine, systematically collected biological samples from a wide variety of habitats, chiefly in Galveston and tributary bays. These studies are designed to evaluate and classify the various types of estuarine habitat in terms of growth and survival of the major species. Studies of the stomach contents of many fishes show their food habits and the role of predation in the complex biological relationships.

The upper floor of Building B contains offices, two laboratories, and a large room for meetings that overtax the capacity of the conference room.

The biometrics laboratory is for studies of population dynamics, especially of the important commercial species of shrimp. Studies of growth rates, and of total and natural mortality rates are made from information obtained from recoveries of stained and tagged shrimp. These estimated rates, in conjunction with population density estimates from the detailed statistics of the catches by species, size, depth, and fishing effort of the commercial fleet, permit the
Large holding tanks in the recirculating sea-water laboratory.

Tiers of small specimen tanks in the recirculating sea-water laboratory.

Staining live shrimp with vital stains so after release they can be identified when recaptured, thus providing valuable knowledge of growth and mortality rates, and migration routes.
making of estimates of harvestable crops under varied types of fishery management.

The engineering projects laboratory is for studying the effects on the estuarine fauna of various types of engineering projects, such as dredging channels and forming banks with the resulting material, bulkheading, filling, draining, and changing of stream flows by upriver dams, by the interbasin transfer of water, and by increased water consumption. These projects often have a significant effect on animal and plant life through the resulting changes in salinities, depths, currents, and turbidity.

East Lagoon field station outside of the Galveston seawall is built over a lagoon which connects with the ship channel into Galveston Bay. The building rests on a 40- by 90-foot concrete slab, elevated to 18 feet above mean sea level on prestressed concrete pilings. The structure withstood "Hurricane Carla" without damage.

Since the field station is situated on a 140-acre tract, natural conditions may be easily maintained, and there is ample space for making ponds as they are needed. The station, completed in 1962, has two 500-gallon-per-minute pumps that empty into two concrete tanks on the roof which connect with a long concrete flume along one edge of the roof. From here the sea water flows by gravity through polyvinylchloride piping under the ceiling of the tank room.

Plan of building B. The first floor contains 3,810 square feet of laboratory space and 364 square feet of office space. On the second floor, two laboratories have 960 square feet and three offices, 602 square feet. The meeting room is used for larger scientific and industrial meetings.
Taking samples of shrimp ovaries aboard a chartered shrimp trawler at sea.

Sectioning imbedded portion of shrimp ovaries to determine stages of maturity.

Gulf V high-speed plankton sampler. The net is fine monel metal screen.
Floating equipment is essential. The extensive system of estuaries, lagoons, and marshes behind the fringing barrier islands require shallow-draft vessels. For the larger bays the TOMMY BOX, a 40-foot diesel-powered vessel permits all-weather operation. For shallower areas, a 17-foot, Fibreglas "Boston Whaler" with a 75-hp. outboard motor is fast and stable. Assorted smaller boats and outboards are available.

For extensive offshore work on the Continental Shelf, the laboratory has covered the area from the Rio Grande to the Mississippi River using chartered shrimpfishing vessels. They are suitable for otter trawling and for limited hydrographic observations. For work requiring several personnel in addition to the crew, as marking of shrimp at sea, biological examination of living material, or use of many of

In addition to the running sea-water system for experimental work, the laboratory serves as a base station for monitoring environmental conditions so that eventually we will be able to compare long-term seasonal and annual trends and assess their effects on the biota. Factors which are being monitored by continuously recording instruments include:

Wind speed and direction
Rainfall
Tide levels
Air temperature
Sea-water temperature
Dissolved oxygen
Hydrogen ion concentration
Humidity
Barometric pressure
Solar radiation
Salinity
Turbidity

Growing marine protozoa in the light culture room.
A discussion of scientific problems in the large meeting room of building B.

Plan of the East Lagoon field station (picture on back cover). The tank room is 40 feet wide and 56 feet long. From large concrete roof tanks, sea water flows through five plastic ceiling pipes each extending 30 feet across the width of the tank room.
The sea-water tank room in the East Lagoon field station.

Instrument panel showing recorders for environmental monitoring instruments in the East Lagoon field station.
the more sophisticated oceanographic instruments, the chartered boats do not provide adequate quarters, laboratory space, or winches. Future laboratory plans include a small oceanographic vessel to fill these voids.

The laboratory welcomes full use of the many available facilities. Arrangements may be made for a limited number of visiting investigators as space permits. The only stipulations are that the research be upon some aspect of marine biology or oceanography and that the Bureau receive copies of resulting reports or publications. Write to the Laboratory Director, Bureau of Commercial Fisheries Biological Laboratory, Fort Crockett, Galveston, Tex., for any further information on facilities and arrangements.

Otter trawling in shallow waters from a laboratory vessel.

Collecting estuarine samples from a skiff.
The shrimp trawler MISS ANGELA chartered for taking biological and hydrographic observations on the Continental Shelf.

Field party chief using sextant to accurately determine station locations at sea.

The shrimp trawler BELLE OF TEXAS chartered for taking biological and hydrographic observations on the Continental Shelf.
These 60 stations on the Continental Shelf out to 60 fathoms are visited every month in an intensive study of the fauna of the shelf area and the effects on abundance of the associated hydrographic conditions.

PUBLISHED CONTRIBUTIONS

This is a list of all published reports by the Bureau of Commercial Fisheries Biological Laboratory in Galveston and its predecessor organizations.

It includes all biological reports by Service personnel during the period since 1927 on the Gulf of Mexico, exclusive of work done at the Sabine Island (Gulf Breeze, Fla.) Laboratory. It also includes material published by staff members on fishes outside the Gulf of Mexico in which the major share of the work was accomplished while staff members of this organization. Publications resulting from work performed for the Bureau under contract are marked with an asterisk. Names of laboratory personnel are underlined for reports coauthored with others.

2. Pearson, John C.

3. Hopkins, Aubrey E.

5. Higgins, Elmer.

7. Lindner, Milton J.

11. Pearson, John C.

12. Lindner, Milton J.

13. Lindner, Milton J.

14. Mosher, Kenneth H.

15. Mosher, Kenneth H.

16. Lindner, Milton J.

17. Pearson, John C.

18. Lindner, Milton J.

20. Lindner, Milton J.
1941. The Texas fisheries. In J. L. Baughman, An annotated bibliography for the student of Texas fishes and fisheries, with material on the Gulf of Mexico and the Caribbean Sea, p. 132-149. (Mimeographed report.)

39. Howell, John F.

40. Slobodkin, L. Basil.

41. Slobodkin, L. Basil.

42. Collier, Albert W.

43. Galtsoff, Paul S.

44. Graham, Herbert W.

47. Rounsefell, George A.

48. Sater, Edna N.

49. Wangersky, Peter J.

50. Arnold, Edgar L., Jr.

51. Lindner, Milton J.

52. Marvin, Kenneth T.

53. Marvin, Kenneth T.

54. Wilson, William B., and Albert W. Collier.

55. Anderson, William W.

57. Bullis, Harvey R., Jr., and Edgar L. Arnold, Jr.

59. Fleminger, Abraham, and Thomas E. Bowman.

62. Chin, Edward, and Donald M. Allen.

63. Collier, Albert W.

64. Costello, Thomas J.

66. Dawson, Charles E., Jr.

67. Fleminger, Abraham.

68. Fleminger, Abraham.

69. Fleminger, Abraham.

71. Starr, Theodore J., and Walter Forsberg.
72. Starr, Theodore J., and Mary Elizabeth Jones.

73. Starr, Theodore J., Domingo Martinez, and Walter Fosberg.

74. Starr, Theodore J., Mary E. Jones, and Domingo Martinez.

75. Marvin, Kenneth T.

76. Collier, Albert W.

77. Allen, Donald M., and Anthony Inglis.

78. Collier, Albert W.

81. Arnold, Edgar L., Jr.

82. Chin, Edward.

84. Rounsefell, George A.

85. Rounsefell, George A.

86. Rounsefell, George A., and John E. Evans.

87. Starr, Theodore J.

89. Zein-Eldin, Zoula P., and Billie Z. May.
 p. 1055-1056.

90. Zein-Eldin, Zoula P., and Billie Z. May.
 1958. Improved N-ethylcarbazole determination of carbohydrates
 with emphasis on sea water samples. Analytical Chemistry, vol.
 30, no. 12, p. 1935-1941.

91. A. and M. College of Texas, Department of Oceanography and Meteorology.
 *1959. Planning of hydrological studies for the Corps of Engineers' proposed
 Mississippi River-Gulf Outlet Project, Louisiana, A. and M. Project 185, Reference 59-5T,
 33 p., 8 figs. (Processed.)

92. A. and M. College of Texas, Department of Oceanography and Meteorology.
 *1959. Hydrological studies for the Corps of Engineers' proposed
 Mississippi River-Gulf Outlet Project, Louisiana, (Report 1.)
 (Processed.)

93. Chin, Edward.
 1959. An inexpensive re-circulating sea-water system. Progressive Fish-
 Culturist, vol. 21, no. 2 (April), p. 91-93.

 1959. A list of references on the biology of shrimp (family
 Penaeidae). U.S. Fish and Wildlife Service, Special Scientific Re-
 port--Fisheries No. 276, 143 p.

95. Costello, Thomas J.
 1959. Marking shrimp with biological stains. Proceedings of the
 Gulf and Caribbean Fisheries Institute, 11th Annual Session, 1958,

96. Finucane, John H., and Alexander Dragovich.
 1959. Counts of red tide organisms, Gymnodinium breve, and associated
 oceanographic data from Florida west coast, 1954-57. U.S. Fish
 289, 220 p.

97. Fleminger, Abraham.
 1959. Distribution of calanoid copepods in the Gulf of Mexico. Interna-

98. Inglis, Anthony, and Edward Chin.
 1959. The bait shrimp industry of the Gulf of Mexico. U.S. Fish and
 Wildlife Service, Fishery Leaflet 480, 14 p. (Revision of Fishery
 Leaflet 337.)

99. Rounsefell, George A.
 1959. On the dynamics of exploited fish populations, by R. J. H.
 Beverton and S. J. Holt. [A review.] Limnology and Oceanog-

 1959. Sea food for sale. Texas Game and Fish, vol. 17, no. 5,
 p. 34-35.

 Texas Reports on Biology and Medicine, vol. 17, no. 1, p. 49-59.

102. Starr, Theodore J.
 1959. A bacteriological technique for the isolation of marine dia-
 toms. Texas Reports on Biology and Medicine, vol. 17, no. 4, p.
 624-625.

 1959. Galveston Biological Laboratory Fishery Research for the year
 ending June 30, 1959. U.S. Fish and Wildlife Service, Cir-

104. Young, Joseph H.
 *1959. Morphology of the white shrimp, Penaeus setiferus (Linnaeus
 1758). U.S. Fish and Wildlife Service, Fishery Bulletin 145,
 vol. 59, 168 p.

 1960. Fish and ships, by Ralph W. Andrews and A. K. Larssen. [A
 89, no. 1, p. 84-85.
106. Chin, Edward.

107. Rounsefell, George A.

108. Kutkuhn, Joseph H.

109. Aldrich, David V.

111. Christmas, James Y., Gordon Gunter, and Edward C. Whatley.

113. Caldwell, David K., J. B. Siebenaler, and Anthony Inglis.

114. Naab, Ronald C.

116. Zein-Eldin, Zoula P.

120. Iverson, Edwin S., Andrew E. Jones, and Clarence P. Idyll.
121. Gunter, Gordon, and James Y. Christmas.

123. May, Billie Z.

124. Reintjes, John W., James Y. Christmas, Jr., and Richard A. Collins.

125. Renfro, William C.

129. Zein-Eldin, Zoula P.

130. Breedlove, Stella.

132. Haskell, Winthrop A.

133. Rounsefell, George A.

134. Skud, Bernard Einar.

135. Inglis, Anthony.

137. Dragovich, Alexander.

139. Dobkin, Sheldon.

140. Dragovich, Alexander, John H. Finucane, and Billie Z. May.

141. Rounsefell, George A.

142. Rounsefell, George A.

143. Costello, T. J.

144. U.S. Fish and Wildlife Service.

145. Kimsey, J. Bruce.

146. Temple, Robert F.

149. Kutkuhn, Joseph H.

150. Kutkuhn, Joseph H.

151. VanDerwalker, John G., and Edward Chin.

152. Rounsefell, George A.
153. Kutkuhn, Joseph H.

156. Kutkuhn, Joseph H.

157. Aldrich, David V.

159. Rounsefell, George A.

160. Rounsefell, George A.

In press. Stabilization of the nitrate content of sea water by freezing. Limnology and Oceanography, vol.___, no.___, p.___ (5 MS. p., 1 fig.).

163. Rounsefell, George A.

164. Kutkuhn, Joseph H.

165. Marvin, Kenneth T., C. M. Proctor, and J. E. Stein.
In press. Factors affecting the reliability of chlorinity analyses. Limnology and Oceanography, vol.___, no.___, p.___ (16 MS. p.).
The East Lagoon Field Station, completed and operative in 1962, only 4 miles from the main laboratory, affords an opportunity to work on living material in almost natural conditions. (Photographed by Lew Stewart.)

Created in 1849, the Department of the Interior—America’s Department of Natural Resources—is concerned with the management, conservation, and development of the Nation’s water, fish, wildlife, mineral, forest, and park and recreational resources. It also has major responsibilities for Indian and Territorial affairs.

As the Nation’s principal conservation agency, the Department works to assure that nonrenewable resources are developed and used wisely, that park and recreational resources are conserved for the future, and that renewable resources make their full contribution to the progress, prosperity, and security of the United States—now and in the future.

UNITED STATES DEPARTMENT OF THE INTERIOR, Stewart L. Udall, Secretary
James K. Carr, Under Secretary
Frank P. Briggs, Assistant Secretary for Fish and Wildlife

FISH AND WILDLIFE SERVICE, Clarence F. Pautzke, Commissioner
BUREAU OF COMMERCIAL FISHERIES, Donald L. McKernan, Director

November 1963