LIFE HISTORY AND ECOLOGY OF SAND SEATROUT
Cynoscion arenarius GINSBURG,
IN THE NORTHERN GULF OF MEXICO: A REVIEW

James G. Ditty
Coastal Fisheries Institute
Center for Wetland Resources
Louisiana State University
Baton Rouge, LA 70803-7503

and

Marty Bourgeois
Louisiana Department of Wildlife and Fisheries
P. O. Box 189
Bourg, LA 70343

and

Rick Kasprzak
Louisiana Department of Wildlife and Fisheries
P. O. Box 98000
Baton Rouge, LA 70898-9000

and

Mark Konikoff
Department of Biology
University of Southwestern Louisiana
P. O. Box 42451
Lafayette, LA 70504

ABSTRACT: Sand seatrout usually represent from 5–7% of trawl catches by weight, 8–10% by number, and consistently rank among the top 5 most abundant species in demersal surveys. Sand seatrout mature at 140–180 mm TL, begin to enter the late developing, gravid, or ripe stages around 180 mm TL, and first spawn at 12 months. Spawning occurs primarily from March through September with distinct peaks in both March–April and August–September. Spawning initially takes place in midshelf to offshore waters and moves shoreward as the season progresses, with most occurring in the lower estuary and shallow GOMEX (7–15 m water depth). Larvae are primarily collected in water depths of <25 m, more are collected at night than during the day, and they are somewhat surface-oriented but become increasingly demersal with size. In pass studies, larval sand seatrout are also more abundant on night flood tides than at other times. Larvae migrate into shallow areas of the estuary where they remain until at least 50–60 mm TL after which they move to deeper water. Mean size predicted by regression was 250, 425, and 573 mm TL at ages I, II, and III, with a typical lifespan of 1–2 years and possibly up to 3 years. Total annual mortality approaches 100% based on trawl data if the lifespan is one year and 90% if two years. Distribution of sand seatrout appears restricted more by water temperature than salinity. Electrophoretic evidence is unclear whether sand seatrout should be recognized as distinct from weakfish. Evidence provided by otolith aging of larvae and differences in larval pigmentation, however, supports the separation of two co-occurring morphological types and suggests separate populations of sand seatrout in the northern Gulf of Mexico.

Sand seatrout, C. arenarius, are harvested both commercially and recreationally in the Gulf of Mexico (GOMEX) and are one of the most important finfish in commercial fisheries of the northern Gulf, contributing a major portion of the industrial bottomfish and foodfish fleet catches (Gutherz et al., 1975). Sand seatrout usually represent from 5–7% of trawl catches by weight (e.g., Moore et al.,
1970; Dunham, 1972; Franks et al., 1972; Chittenden and McEachran, 1976; Warren, 1981), 8–10% by number (e.g., Gunter 1936, 1938a, 1945; Perret and Caillouet, 1974; Warren, 1981) and consistently rank among the top five most abundant species in demersal surveys. The fishery is centered around the Mississippi River Delta, an area of high bottomfish densities (Sheridan et al., 1984). Landings of industrial bottomfish from the northern GOMEX have increased dramatically since 1953 (Gutherz et al., 1975) and by 1975 sand seatrout ranked 12th in total landings and 14th in ex-vessel values in GOMEX commercial fisheries (Nakamura, 1981). Sand seatrout are also a major segment of the finfish discards of the shrimp fleet (Gunter, 1936; Gutherz et al., 1975; Juhl and Drummond, 1977), ranking second by weight off Mississippi and Louisiana (Pavella, 1977), and third by number of individuals collected/yr (Butch Pellegrin, pers. comm.). Sand seatrout account for over 5% of finfish bycatch in the northcentral Gulf and in the northwestern Gulf (Juhl and Drummond, 1977), but contribute <1% to the bycatch of the northeastern GOMEX. Although this species remains common in the northern GOMEX, sand seatrout utilization will continue to increase with fishing pressure resulting from more stringent management of the more popular and exploited species. Despite its abundance, many aspects of sand seatrout life history have been relatively poorly studied, information is widely scattered and some is conflicting. There has been one previous synopsis of sand seatrout data but this review (Sutter and McIlwain, 1987) does not discuss stock identification problems, early life history information, or attempt to resolve discrepancies in other aspects of seatrout life history. Therefore, the objectives of this paper are to review and synthesize sand seatrout life history data, provide some new information on seasonal movements, resolve discrepancies where possible and identify areas requiring further study.

**STOCK DESCRIPTION**

The taxonomic status of sand seatrout as a species distinct from weakfish, *C. regalis*, is still uncertain. Sand seatrout are primarily restricted to the GOMEX (Florida Bay to Campeche Bay) and weakfish to the Atlantic coast of the U.S. and Canada (Nova Scotia to southern Florida), but two adult weakfish have been captured in the GOMEX off southern Florida near Marcos Island (Weinstein and Yerger, 1976). Sand seatrout and weakfish have been recognized as distinct species or at least sub-species based on morphometric and meristic counts but there is considerable overlap in characters (Ginsburg, 1929). Differences in larval pigmentation, age, and growth data (Ditty, 1984; Cowan, 1985; Cowan et al., 1989; Ditty, 1989) indicate that two larval types of sand seatrout occur in the northern GOMEX. Temporal separation of two distinct spawned groups each year also suggest separate populations or species but similarities in the life history and population dynamics of sand seatrout and weakfish suggest that they may be conspecific (Shlossman and Chittenden, 1981). Electrophoretic evidence is unclear whether sand seatrout and weakfish are reproductively isolated (Paschall, 1986) and whereas one study suggests that sand seatrout should be recognized as a sub-species of weakfish (Weinstein and Yerger, 1976) another study found that separation of these two taxa was uncertain (Paschall, 1986). While literature on the possibly conspecific weakfish might apply to sand seatrout, we herein follow Robins et al. (1980) and refer to

---

1Butch Pellegrin, National Marine Fisheries Service, Southeast Fisheries Center, Pascagoula, MS.
sand seatrout as a species separate from weakfish and therefore do not include literature on weakfish (see Wilk, 1979; Mercer, 1983 for review).

REPRODUCTION AND EARLY LIFE HISTORY

Sand seatrout mature at 140-180 mm total length (TL), begin to enter the late developing, gravid, or ripe stages around 180 mm TL, and first spawn at 12 months (Shlossman and Chittenden, 1981). Similar sizes at maturation have been reported in another study (Sheridan et al., 1984) with the smallest maturing male and female of 129 and 140 mm SL. Maturing and ripe sand seatrout are mainly collected during March and April (e.g., Moffett et al., 1979; Shlossman and Chittenden, 1981; Sheridan et al., 1984), although maturing females have also been collected during August (Sheridan et al., 1984). Male to female sex ratios vary by study and show no pattern (Table 1).

Fecundities of sand seatrout (N = 131) from the Mississippi Delta region increase with standard length (SL) and range from 28,200 eggs for a 210 mm SL (142.8 gm) female to 324,900 eggs for a 224 mm SL (223.7 gm) female (Sheridan et al., 1984). Fecundity (F), defined as the potential number of eggs spawned over a reproductive season assuming all counted eggs would be released, was related to fish length (SL), weight (W), and ovary weight (OW) as follows:

\[ F = -198.665 + 1,480 \text{ SL} \quad r^2 = 0.36 \]
\[ F = -8,917 + 759 \text{ W} \quad r^2 = 0.51 \]
\[ F = 32,557 + 7,893 \text{ OW} \quad r^2 = 0.53 \]

Sand seatrout are less fecund than similar size weakfish, with sand seatrout (140-268 mm SL) averaging 100,900 eggs and weakfish (190-268 mm SL) 285,700 eggs (Sheridan et al., 1984).

Sand seatrout larvae have been collected from January (Cowan, 1985) through October in the northern GOMEX above 26°00' N lat. (Ditty et al., 1988) and year-round off southwest Florida (Peebles, 1987), but spawning occurs primarily from March through September with distinct peaks during both March–April and August–September (e.g., Jannke, 1971; Shlossman and Chittenden, 1981; Sheridan et al., 1984; Ditty, 1986). Little spawning occurs during mid-summer and none between October and December based on gonad maturity data (Shlossman and Chittenden, 1981; Sheridan et al., 1984). Spawning in the laboratory occurs soon after (usually 1–2 hrs) lab-simulated dusk (Holt et al., 1985). Egg diameters range from 0.67–0.90 mm and hatching usually occurs between 18–36 hrs. after spawning depending on water temperature (Holt et al., 1988).

Off Texas, most maturing and ripe female sand seatrout (38%) were collected between the 56 and 73 m isobaths (Sheridan et al., 1984), whereas they occurred at depths of 73–91 m off Mississippi (Franks et al., 1972). This variation in depth, however, may be due to differences in habitat depths off Texas and the Mississippi Delta (Sheridan et al., 1984). The presence of larvae (<3.0 mm TL) in midshelf to offshore waters (15–80 m water depth) early in the season suggests that spawning initially takes place at these depths (Cowan and Shaw, 1988). Spawning moves shoreward as the season progresses (Cowan and Shaw, 1988) with most occurring in the lower estuary and shallow GOMEX. The main “nursery” is in water <18 m deep (Shlossman and Chittenden, 1981). Spawning location is probably determined by salinity and intensity of spawning by water temperature (Peebles, 1987).

Larval sand seatrout are primarily collected in water depths of <25 m (Ditty et al., 1988), more are collected at night than during the day, and they are somewhat surface-oriented (Peebles, 1987;
Table 1. Male:Female sex ratios of sand seatrout, Cynoscion arenarius, from the northern Gulf of Mexico.

<table>
<thead>
<tr>
<th>AUTHORS</th>
<th>SEX RATIO</th>
<th>N</th>
<th>STUDY LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landry and Armstrong 1980</td>
<td>1:1.32</td>
<td>849</td>
<td>Western Louisiana</td>
</tr>
<tr>
<td>Moffett et al. 1979</td>
<td>1:1.66</td>
<td>498</td>
<td>Galveston Bay, TX</td>
</tr>
<tr>
<td>Sheridan et al. 1984</td>
<td>1.09:1</td>
<td>1191</td>
<td>Pensacola Bay, FL to Brownsville, TX</td>
</tr>
<tr>
<td>Shlossman and Chittenden 1981</td>
<td>1.30:1</td>
<td>1776</td>
<td>Upper Texas Coast</td>
</tr>
</tbody>
</table>

Cowan and Shaw, 1988; Leffler, 1989; Lyczkowski-Shultz et al., 1990) but become increasingly demersal with size (Rogers and Herke, 1985; Peebles, 1987). In pass studies, larval sand seatrout are also more abundant on night flood tides than at other times (Simmons and Hoese, 1959; Lyczkowski-Shultz et al., 1990). Larvae migrate into shallow areas of the upper estuaries (Benson, 1982) and apparently prefer small bayous, shallow marshes, and channels during their early life stages (Conner and Truesdale, 1972; Moffett et al., 1979) moving to deeper areas as they grow. Two-layered circulation has been hypothesized as the mechanism of transport toward and retention in nursery areas of Naples Bay, Florida, and would allow the smaller larvae in the lower part of the bay to remain in relatively high salinity waters while maintaining proximity to low salinity habitats utilized by the more euryhaline postlarvae and juveniles (Peebles, 1987). Off Louisiana, however, across-shelf transport of larvae was an order of magnitude smaller than along-shore western advective transport and this may account for the lack of a clear offshore/onshore larval size gradient (Cowan and Shaw, 1988). Shelf spawning is toward the east or “upstream” of larval landfall and there is a 1–2 month delay between offshore spawning and the first appearance of marsh migrants (Shaw et al., 1988). Sand seatrout <30 mm SL first appear in estuaries during April and continue to immigrate throughout the summer and early fall (e.g., Perret et al., 1971; Franks et al., 1972; Warren and Sutter, 1982b) but with distinct peaks during April–May and September–October.

AGE, GROWTH, AND MORTALITY

Off Louisiana, late winter–early spring spawned sand seatrout larvae (2.2–11.1 mm TL) ranged from 10 to 70 days old (Cowan et al., 1989). In addition, larval age and growth data (Cowan, 1985; Cowan et al., 1989) support the separation based on pigmentation (Ditty, 1984; Ditty, 1989) of two co-occurring morphological types. These age and growth data found that morph A grew significantly faster (6 mm TL/mon) than morph B (4.2 mm TL/mon) at water temperatures of 20–21°C (Cowan, 1985) and suggest separate populations in the northern GOMEX. Off Naples Bay, Florida, larval growth was estimated at 0.31 mm SL/day (9.3 mm SL/mon) for water temperatures of 25°C or higher and for fish between 1.7–5.5 mm SL (Peebles, 1987).

Length-frequency data indicate that growth was faster for spring spawned (16.0–27.7 mm SL/mon) than late summer spawned (10.2–14.7 mm SL/mon) sand seatrout off Mississippi, with an estimated mean growth rate of 23.2 mm SL/mon for spring spawned seatrout (Warren et al., 1978; Warren, 1981). Growth was also greater for spring spawned (35 mm TL/mon) than late summer spawned (5–10 mm TL/mon) sand seatrout off Texas (Shlossman and Chittenden, 1981).
Lengths at age based on length-frequency data averaged 210–280 mm TL depending on spawned group with mean sizes predicted by regression of 250, 425, and 573 mm TL at ages I, II, and III (Shlossman and Chittenden, 1981). Length at age based on scales was consistent with estimates from length-frequency data but scale age determination was probably impossible for fish older than II or III (Shlossman and Chittenden, 1981). Mean back-calculated TL and age of sand seatrout (N = 48) from the northcentral GOMEX based on otoliths (Y = 178.8 + 87.1X; r = 0.68) was 200 mm TL at age I and 247 mm TL at age II (Barger and Johnson, 1980). Protracted spawning, continued recruitment, and possible gear selectivity problems, however, complicate age and growth determination, hence estimation of juvenile growth from length-frequency data are possible only over short periods (weeks) but questionable over months (Warren and Sutter, 1982b; Shlossman and Chittenden, 1981).

Few sand seatrout exceed a maximum size of 300 mm TL (Chittenden and McEachran, 1976; Shlossman and Chittenden, 1981), although published records have reported several trawl-caught fish up to about 500 mm TL (Franks et al., 1972; Adkins and Bowman, 1976). Maximum lifespan of sand seatrout is typically 1–2 yrs and possibly up to 3 yrs (Chittenden and McEachran, 1976; Shlossman and Chittenden, 1981). Comparison of length-weight relationships of sand seatrout from throughout the GOMEX (Table 2) suggest that there might be distinct populations off Texas (Vetter, 1977; Moffett et al., 1979; Shlossman and Chittenden, 1981) and the Louisiana–Mississippi coast (Dawson, 1965; Warren, 1981; Warren and Sutter, 1982a). Weight per unit length increases more rapidly for sand seatrout off Texas than for those off Louisiana/Mississippi but the differences in slope between these two areas could result from gear selectivity biases or from the lack of juvenile sand seatrout in the three aforementioned Texas studies.

A larval instantaneous mortality coefficient has been estimated at 0.31 (i.e., 27%/day) for larvae <5 mm SL, with a total larval mortality of 99% by 5 mm SL. For postlarvae (>5 mm SL), the annual mortality would result in a loss of over 97% of the stock (Peebles, 1987). Adult sand seatrout off Texas have a total annual mortality rate that approaches 100% and a best estimate of 99.8% based on trawl data if lifespan is one year and a total annual mortality of about 90% if two years (Shlossman and Chittenden, 1981). Continued recruitment during late spring and early summer, however, probably biases sand seatrout mortality estimates (Warren, 1981). High mortality rates also result from heavy fishing pressure exerted by trawlers for several weeks after the opening of shrimp season because brown shrimp (Penaeus aztecus) and juvenile sand seatrout simultaneously occupy similar estuarine and nearshore areas (Gunter, 1936; Warren, 1981).

**HABITAT, MOVEMENT, AND ECOLOGY**

Sand seatrout inhabit shelf and estuarine waters of the GOMEX from southwest Florida to the Gulf of Campeche (Ditty et al., 1988 for review). Of the three species of Cynoscion found in the GOMEX, the annual migratory pattern of sand seatrout (i.e., moving offshore during the fall and winter and returning to the bays and estuaries during the spring and summer) is most similar to that of the typical white shrimp grounds community of demersal fishes (Chittenden and McEachran, 1976). In contrast, silver seatrout usually remain offshore and spotted seatrout in estuaries and bays throughout the year (Simmons, 1957; Swingle, 1971). Larvae and early juvenile sand seatrout (<30 mm SL) usually begin
Table 2. Summary of the length-weight relationship for sand seatrout, *Cynoscion arenarius*, from the Gulf of Mexico. Weight is measured in grams and length in mm standard length (SL), except where noted. All logs are base 10.

<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>STUDY LOCATION</th>
<th>N</th>
<th>SIZE RANGE</th>
<th>LENGTH-WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warren and Sutter 1982a</td>
<td>Mississippi Sound</td>
<td>1155(^1)</td>
<td>12–180</td>
<td>log W = -4.5408 + 2.8919 log SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>956</td>
<td>13–180</td>
<td>= -4.6524 + 2.9603 log SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1378</td>
<td>12–180</td>
<td>= -4.4245 + 2.8296 log SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1008</td>
<td>12–177</td>
<td>= -4.4729 + 2.8589 log SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1737</td>
<td>13–190</td>
<td>= -4.5909 + 2.9165 log SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2362</td>
<td>11–178</td>
<td>= -4.6496 + 2.9512 log SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2071</td>
<td>13–180</td>
<td>= -4.7119 + 2.9793 log SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>779</td>
<td>14–180</td>
<td>= -4.8241 + 2.9314 log SL</td>
</tr>
<tr>
<td>Dawson 1965</td>
<td>Louisiana-Mississippi</td>
<td>507</td>
<td>40–205</td>
<td>log W = -4.5115 + 2.8922 log SL</td>
</tr>
<tr>
<td>Sheridan <em>et al.</em> 1984</td>
<td>Pensacola Bay, FL to Brownsville, TX</td>
<td>1191</td>
<td>82–310</td>
<td>log W = -4.46 + 2.86 log SL</td>
</tr>
<tr>
<td>Matlock and Strawn 1976</td>
<td>Galveston Bay, TX</td>
<td>289</td>
<td>14–119</td>
<td>log W = -4.5797 + 2.9206 log SL</td>
</tr>
<tr>
<td>Moffett <em>et al.</em> 1979</td>
<td>Galveston Bay, TX</td>
<td>144(^2)</td>
<td>125–375</td>
<td>log W = -5.0943 + 3.1130 log SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123(^\circ)</td>
<td>135–350</td>
<td>= -5.1226 + 3.1313 log SL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TL = 0.7 + 1.1 SL</td>
</tr>
<tr>
<td>Shlossman and Chittenden 1981</td>
<td>Upper Texas Coast</td>
<td>653(^\circ)</td>
<td>—</td>
<td>log W = -5.6325 + 3.2420 log TL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>851(^\circ)</td>
<td>—</td>
<td>log W = -5.6609 + 3.2572 log TL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1775(^\circ)</td>
<td>40–338</td>
<td>= -5.4698 + 3.1715 log TL</td>
</tr>
<tr>
<td>Vetter 1977</td>
<td>Aransas Bay, TX</td>
<td>52</td>
<td>140–330</td>
<td>log W = -5.16 + 3.1494 log SL</td>
</tr>
</tbody>
</table>

\(^1\) Years 1974 through 1981
\(^2\) Regression equations between males and females were significantly different at \(\alpha = 0.05\)

---

To immigrate to estuaries during April, peaking in May (e.g., Copeland and Bechtle, 1974) and emigrate from bays and estuaries to GOMEX waters at the onset of cool weather during fall and winter (Gunter, 1945; Guest and Gunter, 1958; Benefield, 1970; Tarbox, 1974). Immature fish are collected throughout the "nursery" area during the summer and early fall (Gunter, 1938b; Perret *et al.*, 1971; Swingle, 1971; Christmas and Waller, 1973), but are most abundant in GOMEX estuaries where they remain until at least 50–60 mm TL (Chittenden and McEachran, 1976). Off Louisiana\(^2\), there is a rapid decline in both minimum and mean TL of sand seatrout collected at offshore stations (30 m station depth) during May and June, coincident with a rapid increase in both minimum and mean TL of fish collected at nearshore stations (10 m station depth) during June and July. During early fall, both minimum and mean TL of sand seatrout in nearshore waters decrease as larger fish move further offshore and immature fish move out of the estuary into deeper waters. These same trends are evident when comparing CPUE and mean TL of sand seatrout collected nearshore with those offshore.

Distribution of sand seatrout appears restricted more by water temperature than salinity (Trent *et al.*, 1969). Juveniles and adults have been collected at water temperatures from 5–37°C (Table 3), with highest catches between 20–35°C and drastically reduced catches at tem-

---

\(^2\) Unpublished data provided by the Louisiana Department of Wildlife and Fisheries, Coastal Investigations Section and the Louisiana Offshore Oil Port (LOOP, Inc.) Project.
peratures <8°C and >35°C (Copeland and Bechtel, 1974). Sand sea trout larvae (<20 mm SL) and early juveniles (20–90 mm SL) in Mississippi Sound were more abundant at water temperatures between 20–30°C (no catch at <15°C) and those between 90 and 220 mm SL were most frequently collected at water temperatures of 25–30°C (Warren and Sutter, 1982b). Sand sea trout migrate in and out of the estuary to avoid water temperature extremes because of an inability to undergo metabolic rate compensation (Vetter, 1982). There is reportedly no optimum salinity or relationship between catch ratio and salinity (Copeland and Bechtel, 1974). In addition, sand sea trout distribution within the estuary does not appear related to salinity (Trent et al., 1969), although larvae and juveniles are more tolerant of low salinities than adults (Gunter, 1945; Benson, 1982). A study of Mississippi Sound, however, found catches of sand sea trout (90–220 mm SL) higher at salinities >15 ppt, juveniles (20–90 mm SL) at <15 ppt, and newly recruited larvae and early juveniles (<20 mm SL) at 0–30 ppt than at other salinities (Warren and Sutter, 1982b).

Food habits of sand sea trout have been relatively well-studied (e.g., Reid, 1955; Reid et al., 1956; Darnell, 1958; Dietz, 1976; Moffett et al., 1979; Sheridan, 1979; Byers, 1981; Creel and Divita, 1982; Divita et al., 1983; Sheridan and Trimm, 1983; Kasp rzk and Guillery, 1984; Sheridan et al., 1984) and show that sea trout are opportunistic carnivores whose diet changes with growth (Moffett et al., 1979; Sheridan, 1979; Byers, 1981; Kasp rzk and Guillery, 1984). Age, habitat, abundance of suitable prey and its availability in different geographic locations influence their diet (Byers, 1981; Sheridan and Trimm, 1983). Young sand sea trout (<40 mm SL; Byers, 1981) primarily consume plankton-size organisms (i.e., copepods, mysids) but gradually became piscivorous as adults. A shift in feeding behavior also occurs around 160 mm SL with smaller sea trout preferring crustaceans and those larger preferring fish (Moffett et al., 1979; Kasp rzk and Guillery, 1984). Engraulids dominated the

Table 3. Water temperature (°C) and salinity (ppt) range data for juvenile and adult sand sea trout, Cynoscion arenarius.

<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>TEMPERATURE</th>
<th>SALINITY</th>
<th>SIZE (mm)</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roessler 1970</td>
<td>19.5–26.0</td>
<td>16.4–35.7</td>
<td>–</td>
<td>Everglades Natl. Park, FL</td>
</tr>
<tr>
<td>Reid 1964</td>
<td>10.0–27.1</td>
<td>17.5–24.8</td>
<td>39–84</td>
<td>Cedar Key, FL</td>
</tr>
<tr>
<td>Gunter and Hall 1965</td>
<td>–</td>
<td>0–23.0</td>
<td>31–209</td>
<td>Caloosahatchee Estuary, FL</td>
</tr>
<tr>
<td>Springer and Woodburn 1960</td>
<td>21.1–31.5</td>
<td>3.7–29.8</td>
<td>29–141</td>
<td>Tampa Bay, FL</td>
</tr>
<tr>
<td>Sykes and Finucane 1966</td>
<td>–</td>
<td>0.1–37.2</td>
<td>14–258</td>
<td>Tampa Bay, FL</td>
</tr>
<tr>
<td>Tagatz and Wilkens 1973</td>
<td>21.7–31.7</td>
<td>2.6–23.0</td>
<td>30–305</td>
<td>Pensacola Bay, FL</td>
</tr>
<tr>
<td>Swingle 1971</td>
<td>–</td>
<td>0.2–30.0</td>
<td>19–260</td>
<td>Alabama Estuaries</td>
</tr>
<tr>
<td>Swingle and Bland 1974</td>
<td>13.7–30.6</td>
<td>0.4–28.1</td>
<td>14–174</td>
<td>Coastal Alabama</td>
</tr>
<tr>
<td>Franks et al. 1972</td>
<td>10.8–29.5</td>
<td>16.8–39.8</td>
<td>71–453</td>
<td>Mississippi Sound</td>
</tr>
<tr>
<td>Christmas 1973</td>
<td>5.0–34.9</td>
<td>0.35–55</td>
<td>16–304</td>
<td>Mississippi Sound</td>
</tr>
<tr>
<td>Warren and Sutter 1982 b</td>
<td>15.0–30.0</td>
<td>.30</td>
<td>&lt;20</td>
<td>Mississippi Sound</td>
</tr>
<tr>
<td>El-Sayed 1961</td>
<td>8.3–34.5</td>
<td>1.0–25.4</td>
<td>35–228</td>
<td>Lake Borgne-Breton Sound, LA</td>
</tr>
<tr>
<td>Fox and Mock 1968</td>
<td>22.0–31.0</td>
<td>20.0–30.0</td>
<td>–</td>
<td>Barataria Bay, LA</td>
</tr>
<tr>
<td>Dunham 1972</td>
<td>12.3–35.2</td>
<td>1.0–32.6</td>
<td>20–345</td>
<td>Barataria Bay, LA</td>
</tr>
<tr>
<td>Perrett and Caillouet 1974</td>
<td>11.0–34.0</td>
<td>0–25.0</td>
<td>31–308</td>
<td>Vermilion Bay, LA</td>
</tr>
<tr>
<td>Perrett et al. 1971</td>
<td>5.0–34.9</td>
<td>0.2–30.0+</td>
<td>15–295</td>
<td>Louisiana coastwide</td>
</tr>
<tr>
<td>Galloway and Strawn 1974</td>
<td>5.0–40.0</td>
<td>–</td>
<td>10–149</td>
<td>Galveston Bay, TX</td>
</tr>
<tr>
<td>Gunter 1945</td>
<td>13.7–36.7</td>
<td>0–37.2</td>
<td>18–377</td>
<td>Port Aransas, TX area</td>
</tr>
<tr>
<td>Miller 1965</td>
<td>12.8–27.8</td>
<td>27.3–36.0</td>
<td>35–236</td>
<td>Off Port Aransas, TX</td>
</tr>
</tbody>
</table>
diet in some studies (e.g., Moffett et al., 1979; Sheridan, 1979; Byers, 1981) and menhaden in other studies and there is some intraspecific cannibalism (Reid, 1955; Reid et al., 1956; Darnell, 1958). There is also a shift in food habits during the fall and winter with sand seatrout consuming relatively more crustaceans than during other months (Sheridan, 1979; Byers, 1981). In addition, piscivorous prey is more abundant in the diet of sand seatrout inshore than those offshore (Byers, 1981).

Areas requiring further study include population age structure and growth rates, stock(s) identification and geographic distribution, mortality, and fecundity. In conclusion, these data represent the current knowledge of sand seatrout life history and ecology in the GOMEX. Hopefully, this information will provide a foundation upon which further research and sound management of the fishery can be based.

ACKNOWLEDGMENTS

We would like to thank the Coastal Investigations Section of the Louisiana Department of Wildlife and Fisheries, the Louisiana Offshore Oil Port (LOOP, Inc.), and the National Marine Fisheries Service (Pascagoula Lab) for providing unpublished trawl data. Thanks also to Jim Hanifen and the LSU Department of Experimental Statistics for additional support. Jim Cowan and an anonymous reviewer provided helpful suggestions to improve the manuscript. Louisiana State University Contribution No. LSU-CFI-91-4.

LITERATURE CITED


Chittenden, M.E., Jr., and J.D. McEachran. 1976. Composition, ecology, and demersal fish communities on the northwestern Gulf of Mexico continental shelf, with a similar synopsis for the entire Gulf. Texas A&M Univ., College Station, TAMU-SG-76-208.


Ginsburg, I. 1929. Review of the weak-


Moffett, A.W., L.W. McEachron, and J.G.


